The temporal distribution of seismic radiation during deep earthquake rupture.

نویسندگان

  • H Houston
  • J E Vidale
چکیده

The time history of energy release during earthquakes illuminates the process of failure, which remains enigmatic for events deeper than about 100 kilometers. Stacks of teleseismic records from regional arrays for 122 intermediate (depths of 100 to 350 kilometers) and deep (depths of 350 to 700 kilometers) earthquakes show that the temporal pattern of short-period seismic radiation has a systematic variation with depth. On average, for intermediate depth events more radiation is released toward the beginning of the rupture than near the end, whereas for deep events radiation is released symmetrically over the duration of the event, with an abrupt beginning and end of rupture. These findings suggest a variation in the style of rupture related to decreasing fault heterogeneity with depth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source Characteristics of Earthquakes in the Michoacan Seismic Gap in Mexico by Luciana Astiz, Hiroo Kanamori, and Holly Eissler

We investigated the source characteristics of large earthquakes which occurred in the Michoacan, Mexico, seismic gap during the period from 1981 to 1986 in relation to historical seismicity in the region. The rupture pattern of the Michoacan gap during this period can be characterized by a sequential failure of five distinct asperities. Before 1981, the Michoacan gap had not experienced a large...

متن کامل

Depth-varying rupture properties of subduction zone megathrust faults

[1] Subduction zone plate boundary megathrust faults accommodate relative plate motions with spatially varying sliding behavior. The 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) great earthquakes had similar depth variations in seismic wave radiation across their wide rupture zones – coherent teleseismic short-period radiation preferentially emanated from the dee...

متن کامل

Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake

Monitoring of earthquake faults and volcanoes contributes to our understanding of their dynamic mechanisms and to our ability to predict future earthquakes and volcanic activity. We report here on spatial and temporal variations of seismic velocity around the seismogenic fault of the 2016 Kumamoto earthquake [moment magnitude (Mw) 7.0] based on ambient seismic noise. Seismic velocity near the r...

متن کامل

Supershear rupture in the 24 May 2013 Mw 6.7 Okhotsk deep earthquake: Additional evidence from regional seismic stations

Zhan et al. (2014a) reported supershear rupture during the Mw 6.7 aftershock of the 2013 Mw 8.3 Sea of Okhotsk deep earthquake, relying heavily on the regional station PET, which played a critical role in constraining the vertical rupture dimension and rupture speed. Here we include fivemore regional stations and find that the durations of the source time functions derived from these stations a...

متن کامل

Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non-planar Fault Model

High-frequency seismic waves are generated by abrupt changes of rupture velocity and slip-rate during an earthquake. Therefore, analysis of high-frequency waves is crucial to understanding the dynamic rupture process. Here, we developed a hybrid back-projection method that considers variations in focal mechanisms by introducing a non-planar fault model that reflects the subducting slab geometry...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 265 5173  شماره 

صفحات  -

تاریخ انتشار 1994